
Alexander Semaan 
Mark Clancy 
Group 17 - CSS 
 

Project 3 - Rust 

Variable Bindings 

variables1.rs 

 

The variable x was not declared using “let”. So all we had to do was add “let” before x. 

variables2.rs 

 

The variable x did was not assigned a value nor a type. To solve this, you can either assign an integer 

value to x, or assign a data type and value which is more accurate. If you assign a data type that is not an 

integer to x, the code will not compile, which is part of Rust’s type safety measure, to check data type 

compatibility. In this case x needs to be an integer, signed or unsigned and big enough to fit the value 

required. In this case I chose an unsigned integer just to test out something other than just i32. 

variables3.rs 

 

The variable x is by default immutable, so when a value is assigned to it, this value cannot be changed. In 

order to make it mutable, we need to add “mut” right after declaring x with “let”. 

variables4.rs 

 



Alexander Semaan 
Mark Clancy 
Group 17 - CSS 
 
X was not assigned a value, which doesn’t allow the code to compile because there is nothing to print, 

and this is a common mistake that can cause bugs, but Rust helps with this. 

Functions 

functions1.rs 

 

The call_me() function was not declared, so the code could not possibly compile. 

functions2.rs 

 

When assigning a parameter to a function, you need to declare what type this parameter is or else, you 

cannot pass this function any parameters. In this case we need an integer so we added “i32” to num. 

functions3.rs 

 

The function called in main, “call_me()” did not take any parameters, so the code would not compile. 

We had to add a parameter to the function call in main, in this case any integer less than 32 bits works. 

functions4.rs 



Alexander Semaan 
Mark Clancy 
Group 17 - CSS 
 

 

The sale_price function was missing the return data type, so the code did not compile because Rust 

cannot assume the return data type for functions. It needs to be explicitly stated. 

functions5.rs 

 

In the function square, we want to have write an expression and not a statement. An expression returns 

a value whereas a statement doesn’t. All we must do is remove the “;” at the end of the statement to 

make it an expression. 

Primitive Types 

primitives_types1.rs 



Alexander Semaan 
Mark Clancy 
Group 17 - CSS 
 

 

primitives_types2.rs 

 

primitives_type3.rs 



Alexander Semaan 
Mark Clancy 
Group 17 - CSS 
 

 

primitives_type4.rs 

 

primitives_type5.rs 

 

primitives_type6.rs 

 

Strings 

strings1.rs 



Alexander Semaan 
Mark Clancy 
Group 17 - CSS 
 

 

strings2.rs 

 

strings3.rs 

 

Being able to make the difference of when to use Strings and when to use String Slices is very important, 

and being able to convert from one type to the other helps a great deal. 

Move Semantics 

move_semantics1.rs 



Alexander Semaan 
Mark Clancy 
Group 17 - CSS 
 

 

Vec1 is immutable so it is not possible to change its value using the push function unless we make it a 

mutable object/variable. 

move_semantics2.rs 

1. 



Alexander Semaan 
Mark Clancy 
Group 17 - CSS 
 

 

2. 

 

 

3. 



Alexander Semaan 
Mark Clancy 
Group 17 - CSS 
 

 

move_semantics3.rs 

 

move_semantics4.rs 



Alexander Semaan 
Mark Clancy 
Group 17 - CSS 
 

 

All move semantics exercises show us the importance of knowing when to make objects mutable and in 

some cases we need to know where an object’s scope ends and how to be able to borrow certain 

objects in order to keep the program flowing properly. 

Threads 

threads1.rs 



Alexander Semaan 
Mark Clancy 
Group 17 - CSS 
 

 

Arc is an Atomic Reference Counted pointer that allows safe, shared access to immutable data. But we 

want to change the number of jobs_completed so we'll need to also use another type that will only 

allow one thread to mutate the data at a time. So we have to use Mutex. 

To access the data in a mutex, a thread must first signal that it wants access by asking to acquire the 

mutex’s lock. The lock is a data structure that is part of the mutex that keeps track of who currently has 

exclusive access to the data. Therefore, the mutex is described as guarding the data it holds via the 

locking system, which offers a great deal of security and we can control which thread has access and 

control over variables and data. 

The call to lock would fail if another thread holding the lock panicked. In that case, no one would ever be 

able to get the lock, so we’ve chosen to unwrap and have this thread panic if we’re in that situation. 

Hence the use of lock() and unwrap() in order to be able to modify jobs_completed with no trouble. 


