
Group 17
Alexander Semaan
Mark Clancy
CY5130 - CSS

1

LAB 2

Ret2Libc Attack

Lab and Environment preparation – Turning off countermeasures

There are some countermeasures put in place by the OS and by the compilers to improve security

against attacks that abuse a rather simple stack architecture. To start, we will conduct this attack with

these countermeasures toggled off and further on, we will add these countermeasures to see how these

countermeasures make attacks harder to execute.

First off, we will disable address space randomization with the following command:

Second, we want to link /bin/sh to another shell than /bin/dash which implements a countermeasure

that detects if a program is executed in a Set-UID process. So we will link /bin/sh to zsh, a shell that was

installed on the Ubuntu 16.04 VM, with the following commands:

‘sudo rm /bin/sh’ -> removes the current /bin/sh

‘sudo ln -s /bin/zsh /bin/sh’ -> links bin/sh to /bin/zsh

Furthermore, for the next two countermeasures, these are implemented by the compiler GCC, when

compiling our program. So, to turn them off we need to specify some options in the gcc command as

follows:

● To disable StackGuard Protection scheme: add option “-fno-stack-protector” to the gcc

command. For example: ‘gcc -fno-stack-protector example.c

● To allow the use of executable stacks, which is now not allowed with newer versions of Ubuntu

and gcc by default, we need to add option “-z execstack” to gcc command.

For example: ‘gcc -z execstack -o example example.c’

Task 1 – Finding out the addresses of libc function

In this part, we want to find out the addresses of system() and exit(). To do that we will use gdb, but first

we need to compile the following retlib.c code that we were given while turning off compiler

countermeasures.

Group 17
Alexander Semaan
Mark Clancy
CY5130 - CSS

2

To compile the code above while turning off compiler countermeasures we do the following:

Now we open the retlib program in gdb to get to the main task, using the following command:

We then want to place a breakpoint on the main function, then run the program using the following:

Group 17
Alexander Semaan
Mark Clancy
CY5130 - CSS

3

Once that is done we can now find the addresses of system() and exit() that will be used in our exploit.

To do that we use the commands ‘p system’ and ‘p exit’ as follows:

We now have both addresses: system is 0xb7e42da0 and exit is 0xb7e369d0

Task 2 – Putting the Shell string in the memory

Part 1 – Create an environment variable to put the string

First, we want to create an environment variable and put the shell string in it. To do that we run the

following in the command line:

‘export MYSHELL=/bin/sh’

Then to make sure this registered we do the following:

‘env | grep MYSHELL’

Here is a screenshot:

Part 2 – Getting the string’s address

Using the following program given to us, we will be able to get the address of the /bin/sh string:

We first save this program as ‘varlocation.c’, compile it using ‘gcc -o varlocation varlocation.c’, make it

executable using ‘sudo chmod +x varlocation’ and run it ‘./varlocation’ to get the string’s address:

Group 17
Alexander Semaan
Mark Clancy
CY5130 - CSS

4

However, we need to note that this points to “MYSHELL” and the address of the string ‘/bin/sh’ comes a

bit after so we might have to increase the address from 0xbffffe12 to 0xbffffe1c precisely where the

/bin/sh string starts.

Task 3 – Writing and modifying the exploit

We are given an exploit that we need to modify to suit our needs, by putting the 3 addresses we found.

Here is the code given:

Now we have the 3 addresses needed, but all that is left is to know where to place them. To get the

offset for each address in the badfile, I need to visualize things so here is a hand-drawn explanation:

Group 17
Alexander Semaan
Mark Clancy
CY5130 - CSS

5

In brief, the location of main’s return address, which we are overflowing into, is 24 bytes after the start

of the variable “buffer” we are overflowing. So, the offset for the system address is 24. Once the system

is called it pushes the esp to esp+8, which returns to what is over the RA we overwrote by 8 bytes, which

is where the /bin/sh string’s address should be, so the offset for that is 24+8=32. As for exit’s address, it

doesn’t really matter as long as it doesn’t interfere with the two addresses we just put, so let’s just put it

at the end of the badfile with an offset of 36.

Now we have all our offsets and addresses, we replace them in our exploit as follows:

Group 17
Alexander Semaan
Mark Clancy
CY5130 - CSS

6

Now we need to save the program, compile it and make it executable. Do:

‘gcc -o exploit exploit.c’

‘sudo chmod +x exploit.c’

Now run the exploit: ‘./exploit’ followed by ‘./retlib’ and you should get a root shell:

Attack Variation 1:

Group 17
Alexander Semaan
Mark Clancy
CY5130 - CSS

7

As previously mentioned the exit() function does not play an important role in our attack as the system()

function and the /bin/sh string are sufficient to get a root shell. Here is the modified code without the

exit call and the result is still a root shell.

Attack Variation 2:

Renaming the program and the script retlib to anything that changes the name’s length, will result in the

exploit failing, and here is why. The program name retlib is located in environment variables, so

changing its name to something with a different length will shift all the addresses of environment

variables and “/bin/sh” won’t be at the same place anymore. Here is a screenshot of environment

variables through gdb:

Group 17
Alexander Semaan
Mark Clancy
CY5130 - CSS

8

From this screenshot, we see that if something in the environment variables changes, the addresses will

have to shift in order to allocate more or less space depending on the changes.

Task 4 – Turning on Address Randomization

Now we want try and put address randomization back on and see if our attack works, and it shouldn’t.

First we run the following command ‘sudo sysctl -w kernel.randomize_va_space=2’ and run the exploit

again ‘./retlib’ and we get a segmentation fault:

Now to dive deeper and see which of our 6 inputted values have changed (X,Y,Z and the 3 addresses),

we will use gdb. However, gdb disables address randomization by default, so we need to set that off, by

doing the following, once you have ran ‘gdb retlib’:

After that we put a breakpoint on main using ‘b main’, then ‘p system’ and ‘p exit’ to get the addresses

of these function calls:

Group 17
Alexander Semaan
Mark Clancy
CY5130 - CSS

9

We realize that these values have completely changed for both addresses, but they are still at the same

relative distance from one another.

Now to check the /bin/sh string’s address that we planted in the environment variables, we use the

same program that was given to us ‘varlocation’ and we get the following:

The program did not return anything which means that it was not able to locate the /bin/sh string,

which highly likely means that its address was modified. Let us verify that using gdb command ‘x/100s

*((char **)environ)’:

It appears that the address for the /bin/sh string has changed a lot as well.

Regarding the values of X, Y and Z, these must also not be accurate, since the stacks for main and bof

will not be one after the other as mentioned in the picture:

Group 17
Alexander Semaan
Mark Clancy
CY5130 - CSS

10

And that can also be shown using gdb with a breakpoint on bof:

The buffer variable from the bof function is nowhere near the esp, which shows that they are not next

to each other and it is impossible to overflow into main’s return address, unless the randomization

makes the stacks right next to each other again. This means that also the values of X,Y and Z are

incorrect.

