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LAB 1 

Buffer Overflow Attack 

 

Lab and Environment preparation – Turning off countermeasures 

There are some countermeasures put in place by the OS and by the compilers to improve security 

against attacks that abuse a rather simple stack architecture. To start, we will conduct this attack with 

these countermeasures toggled off and further on, we will add these countermeasures to see how these 

countermeasures make attacks harder to execute. 

First off, we will disable address space randomization with the following command: 

 

Second, we want to link /bin/sh to another shell than /bin/dash which implements a countermeasure 

that detects if a program is executed in a Set-UID process. So we will link /bin/sh to zsh, a shell that was 

installed on the Ubuntu 16.04 VM, with the following commands: 

‘sudo rm /bin/sh’ -> removes the current /bin/sh 

‘sudo ln -s /bin/zsh /bin/sh’ -> links bin/sh to /bin/zsh 

Furthermore, for the next two countermeasures, these are implemented by the compiler GCC, when 

compiling our program. So, to turn them off we need to specify some options in the gcc command as 

follows: 

● To disable StackGuard Protection scheme: add option “-fno-stack-protector” to the gcc 

command. For example: ‘gcc -fno-stack-protector example.c 

● To allow the use of executable stacks, which is now not allowed with newer versions of Ubuntu 

and gcc by default, we need to add option “-z execstack” to gcc command. 

For example: ‘gcc -z execstack -o example example.c’ 

Task 1 – Running Shellcode 

In this part, we just want to get familiar with shellcode and see what happens when shellcode is 

invoked. So, we compile and execute the following code to get a shell: 
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The code above runs and returns a shell with root privilege, see commands below of compiling, 

executing and checking privileges: 

 

Some remarks about the shellcode we used is the double ‘/’ for ‘//sh’, and that was used because ‘/sh’ 

only has 24 bits and we need 32 bits for 32 bit machines, and fortunately ‘//’ is equivalent to ‘/’ so we 

have no problem there. Then, before calling the execv() system call, we need to store name[0] (the 

address of the string), name (the address of the array), and NULL to the %ebx, %ecx, and %edx registers, 

respectively. Line 5 stores name[0] to %ebx; Line 8 stores name to %ecx; Line 9 sets %edx to zero, using 

cdq: it copies the sign (bit 31) of the value in the EAX register (which is 0 at this point) into every bit 

position in the EDX register, basically setting %edx to 0. Finally, the system call execve() is called when 

we set %al to 11, and execute “int $0x80”. 
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Task 2 – Exploiting the Vulnerability 

Part 1 – Preparing the vulnerable program 

The vulnerable program given to us is the following: 

 

First, we compile the above program and we don’t forget to toggle off the countermeasures, using the 

following command: 

‘gcc -o stack -z execstack -fno-stack-protector stack.c’ 

Then we want to make the program a root-owned Set-UID program, and to do that we apply the 

following commands: 

‘sudo chown root stack’ -> changes ownership of the program 

‘sudo chmod 4755 stack’ -> changes permission to 4755 which enables the Set-UID bit. 
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Part 2 – Finding the return address and relevant information 

In order to find the return address’ location and to get the information needed to plan the attack, we 

will use gbp. 

First, to debug the program we will need to apply the following command: 

‘gcc -z execstack -fno-stack-protector -g -o stack_dbg stack.c’ -> create the program we will debug  

Then, we create a file named ‘badfile’ for the program to run and we have it in the same directory: 

‘gedit badfile’ -> put anything in there less than 24 characters for now and save the file. 

Now, we use gdb the following way: 

‘gdb stack_dbg’ -> this loads the program in gdb 

 

‘b bof’ -> we place a breakpoint at the function bof: this will allow us to get the value of the frame 

pointer before the program goes into the bof function. 

 

‘run’ -> runs the program and stops at bof(). 
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‘p $ebp’ -> this will give us the value of the frame pointer. 
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‘p &buffer’ -> this will give us the starting address of our variable ‘buffer’ that we will input our badfile 

into using the strcpy() function and overflow to reach the return address: 

 

Now we want to see how many bytes are between the starting address of the buffer and where the 

return address is stored. We know that the return address is stored 4 bytes after the frame pointer. So, 

all that’s left is to find how many bytes are between the frame pointer and the starting address of 

buffer. So we do: 

‘p/d 0xbfffeb58 – 0xbfffeb38’ 

‘quit’ -> to exit 

 

This means that there are 32 Bytes between the frame pointer and the starting address of buffer, which 

means that the return address is at 32+4=36 Bytes after the start of Buffer, and that the value we need 

to give the return address is supposed to be anything over 0xbfffeb58 + 8, because that will jump to 

where the NOPs are stored which we will talk about next in the exploit program. 

 

Part 3 – Writing and modifying the exploit 

We are given an exploit containing some shellcode already, and we need to modify the rest of the code 

to our needs. Here is the code for the python exploit given: 
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This code will fill the badfile with NOPs, put shellcode at the end of it and put the return address that we 

figured out earlier in the correct place (correct offset). 

So, we want to modify this code by setting the offset value D to 36, which is where the return address 

field should be as calculated previously. And we want to fill that return address with anything over 

0xbfffeb58 + 8 but not greater than 517 – 32 – shellcode length, so nothing greater than 400 let’s say. It 

doesn’t really matter because we filled the badfile with NOPs which just pushes the pointer to the next 
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address. We choose 0xbfffeb58 + 40 = 0xbfffeb80. Now we fill that in the order of least significant byte, 

meaning that ‘80’ goes into ‘content[D+0] and ‘EB’ goes into ‘content[D+1]’ etc… (see image below) 

This gives us the following: 

 

Now we need to save the program, make it executable and delete the previously created badfile. Do: 

‘sudo chmod +x exploit.py’ -> makes the python program executable 

‘rm badfile’ -> deletes the previously created badfile. 
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Now run the exploit: ‘./exploit.py’ followed by ‘./stack’ and you should get a shell: 

 

 

Task 3 – Defeating dash’s countermeasure 

Now we want to link /bin/sh back to dash and try to modify the shellcode in our exploit to overcome the 

countermeasure. To do that, we want to change the real user ID of the victim process to zero before 

invoking the dash program. We can achieve this by invoking setuid(0) before executing execve() in the 

shellcode. First, let’s link /bin/sh back to /bin/dash, by doing: 

‘sudo ln -sf /bin/dash /bin/sh’ 

Now let us test how the dash countermeasure works by using the following program: 

  

Compile and setup the following program using the following commands as done previously: 

‘gcc dash_shell_test.c -o dash_shell_test’ -> compile program 

‘sudo chown root dash_shell_test’ -> changes ownership of the program 
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‘sudo chmod 4755 dash_shell_test’ -> changes permission to 4755 which enables the Set-UID bit. 

Notice that the setuid(0) line is commented, so when we run the program we will get a shell but not a 

root shell, which is expected as the dash countermeasure is up. 

 

This time uncomment the line and run the program and get a root shell: 

 

This shows how to get past the dash countermeasure, so now we want to add the assembly code of 

setuid(0) to our shellcode, placing it before execve(). For convenience we will place it at the top of the 

shellcode as follows: 
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The updated shellcode adds 4 instructions: (1) set ebx to zero in Line 2, (2) set eax to 0xd5 via Line 1 and 

3 (0xd5 is setuid()’s system call number), and (3) execute the system call in Line 4. Using this shellcode, 

we can attempt the attack on the vulnerable program when /bin/sh is linked to /bin/dash, and succeed. 

Let’s try this again to successfully get a root shell with dash countermeasure on: 

‘rm badfile’ -> delete old badfile 

‘./exploit.py’ -> create new badfile with updated shellcode 

‘./stack’ -> run vuln program 

 

 

Task 4 - Defeating address layout randomization 

On 32-bit Linux machines, stacks only have 19 bits of entropy, which means the stack base address can 

have 2 19 = 524, 288 possibilities. This is not a very high number and can be brute-forced rather easily. 

Let’s turn on address randomization back on by doing the following: 

‘sudo /sbin/sysctl -w kernel.randomize_va_space=2’ 

The bash script that we will run in hopes of brute-forcing is the following: 

 

Save this script as ‘brute.sh’ and make it executable with the following command: 
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‘sudo chmod +x brute.sh’ 

Then execute it and wait as it might take some time: ‘./brute.sh’. In my case it only took 1 minute and 15 

seconds and it gave me back a root shell: 

 

It is crazy to see how easily and how quickly address layout randomization can be defeated on 32 bit 

systems, however on 64 bits systems it might be more difficult and take longer, but it should still be 

doable. 

 

Task 5 - StackGuard Protection 

As previously mentioned, while compiling the vulnerable program, we had to disable StackGuard 

protection in order to successfully exploit the vulnerability in the program. However, now we will 

recompile the program without disabling the StackGuard. We are not expected to defeat this 

countermeasure. Recompile the program as follows: 

‘gcc -o stack.c -z execstack stack.c’ 

‘./stack’ 

We get the following error: 

 

The compiler detected that something is trying to abuse a buffer overflow in the stack and immediately 

terminated the program and aborted the tasks. 

 

Task 6 - Non-executable stack protection 

Again, previously while compiling the vulnerable program, we made sure to toggle off non-executable 

stack protection by using the option ‘-z execstack’ for the gcc command. Now, we will recompile our 

vulnerable program with this protection, but without StackGuard protection as follows: 
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‘ gcc -o stack -fno-stack-protector -z noexecstack stack.c’ 

‘./stack’ 

 

We should not be able to gain a root shell because non-executable stack protection does not allow 

shellcode to run in the stack. However, an attacker can still exploit this program by doing something 

other than opening a shell like returning to libc. Return-to-libc is a known attack method that overcomes 

non-executable stack protection. 


