
Group 17
Alexander Semaan
Mark Clancy
CY5130 - CSS

1

LAB 1

Buffer Overflow Attack

Lab and Environment preparation – Turning off countermeasures

There are some countermeasures put in place by the OS and by the compilers to improve security

against attacks that abuse a rather simple stack architecture. To start, we will conduct this attack with

these countermeasures toggled off and further on, we will add these countermeasures to see how these

countermeasures make attacks harder to execute.

First off, we will disable address space randomization with the following command:

Second, we want to link /bin/sh to another shell than /bin/dash which implements a countermeasure

that detects if a program is executed in a Set-UID process. So we will link /bin/sh to zsh, a shell that was

installed on the Ubuntu 16.04 VM, with the following commands:

‘sudo rm /bin/sh’ -> removes the current /bin/sh

‘sudo ln -s /bin/zsh /bin/sh’ -> links bin/sh to /bin/zsh

Furthermore, for the next two countermeasures, these are implemented by the compiler GCC, when

compiling our program. So, to turn them off we need to specify some options in the gcc command as

follows:

● To disable StackGuard Protection scheme: add option “-fno-stack-protector” to the gcc

command. For example: ‘gcc -fno-stack-protector example.c

● To allow the use of executable stacks, which is now not allowed with newer versions of Ubuntu

and gcc by default, we need to add option “-z execstack” to gcc command.

For example: ‘gcc -z execstack -o example example.c’

Task 1 – Running Shellcode

In this part, we just want to get familiar with shellcode and see what happens when shellcode is

invoked. So, we compile and execute the following code to get a shell:

Group 17
Alexander Semaan
Mark Clancy
CY5130 - CSS

2

The code above runs and returns a shell with root privilege, see commands below of compiling,

executing and checking privileges:

Some remarks about the shellcode we used is the double ‘/’ for ‘//sh’, and that was used because ‘/sh’

only has 24 bits and we need 32 bits for 32 bit machines, and fortunately ‘//’ is equivalent to ‘/’ so we

have no problem there. Then, before calling the execv() system call, we need to store name[0] (the

address of the string), name (the address of the array), and NULL to the %ebx, %ecx, and %edx registers,

respectively. Line 5 stores name[0] to %ebx; Line 8 stores name to %ecx; Line 9 sets %edx to zero, using

cdq: it copies the sign (bit 31) of the value in the EAX register (which is 0 at this point) into every bit

position in the EDX register, basically setting %edx to 0. Finally, the system call execve() is called when

we set %al to 11, and execute “int $0x80”.

Group 17
Alexander Semaan
Mark Clancy
CY5130 - CSS

3

Task 2 – Exploiting the Vulnerability

Part 1 – Preparing the vulnerable program

The vulnerable program given to us is the following:

First, we compile the above program and we don’t forget to toggle off the countermeasures, using the

following command:

‘gcc -o stack -z execstack -fno-stack-protector stack.c’

Then we want to make the program a root-owned Set-UID program, and to do that we apply the

following commands:

‘sudo chown root stack’ -> changes ownership of the program

‘sudo chmod 4755 stack’ -> changes permission to 4755 which enables the Set-UID bit.

Group 17
Alexander Semaan
Mark Clancy
CY5130 - CSS

4

Part 2 – Finding the return address and relevant information

In order to find the return address’ location and to get the information needed to plan the attack, we

will use gbp.

First, to debug the program we will need to apply the following command:

‘gcc -z execstack -fno-stack-protector -g -o stack_dbg stack.c’ -> create the program we will debug

Then, we create a file named ‘badfile’ for the program to run and we have it in the same directory:

‘gedit badfile’ -> put anything in there less than 24 characters for now and save the file.

Now, we use gdb the following way:

‘gdb stack_dbg’ -> this loads the program in gdb

‘b bof’ -> we place a breakpoint at the function bof: this will allow us to get the value of the frame

pointer before the program goes into the bof function.

‘run’ -> runs the program and stops at bof().

Group 17
Alexander Semaan
Mark Clancy
CY5130 - CSS

5

‘p $ebp’ -> this will give us the value of the frame pointer.

Group 17
Alexander Semaan
Mark Clancy
CY5130 - CSS

6

‘p &buffer’ -> this will give us the starting address of our variable ‘buffer’ that we will input our badfile

into using the strcpy() function and overflow to reach the return address:

Now we want to see how many bytes are between the starting address of the buffer and where the

return address is stored. We know that the return address is stored 4 bytes after the frame pointer. So,

all that’s left is to find how many bytes are between the frame pointer and the starting address of

buffer. So we do:

‘p/d 0xbfffeb58 – 0xbfffeb38’

‘quit’ -> to exit

This means that there are 32 Bytes between the frame pointer and the starting address of buffer, which

means that the return address is at 32+4=36 Bytes after the start of Buffer, and that the value we need

to give the return address is supposed to be anything over 0xbfffeb58 + 8, because that will jump to

where the NOPs are stored which we will talk about next in the exploit program.

Part 3 – Writing and modifying the exploit

We are given an exploit containing some shellcode already, and we need to modify the rest of the code

to our needs. Here is the code for the python exploit given:

Group 17
Alexander Semaan
Mark Clancy
CY5130 - CSS

7

This code will fill the badfile with NOPs, put shellcode at the end of it and put the return address that we

figured out earlier in the correct place (correct offset).

So, we want to modify this code by setting the offset value D to 36, which is where the return address

field should be as calculated previously. And we want to fill that return address with anything over

0xbfffeb58 + 8 but not greater than 517 – 32 – shellcode length, so nothing greater than 400 let’s say. It

doesn’t really matter because we filled the badfile with NOPs which just pushes the pointer to the next

Group 17
Alexander Semaan
Mark Clancy
CY5130 - CSS

8

address. We choose 0xbfffeb58 + 40 = 0xbfffeb80. Now we fill that in the order of least significant byte,

meaning that ‘80’ goes into ‘content[D+0] and ‘EB’ goes into ‘content[D+1]’ etc… (see image below)

This gives us the following:

Now we need to save the program, make it executable and delete the previously created badfile. Do:

‘sudo chmod +x exploit.py’ -> makes the python program executable

‘rm badfile’ -> deletes the previously created badfile.

Group 17
Alexander Semaan
Mark Clancy
CY5130 - CSS

9

Now run the exploit: ‘./exploit.py’ followed by ‘./stack’ and you should get a shell:

Task 3 – Defeating dash’s countermeasure

Now we want to link /bin/sh back to dash and try to modify the shellcode in our exploit to overcome the

countermeasure. To do that, we want to change the real user ID of the victim process to zero before

invoking the dash program. We can achieve this by invoking setuid(0) before executing execve() in the

shellcode. First, let’s link /bin/sh back to /bin/dash, by doing:

‘sudo ln -sf /bin/dash /bin/sh’

Now let us test how the dash countermeasure works by using the following program:

Compile and setup the following program using the following commands as done previously:

‘gcc dash_shell_test.c -o dash_shell_test’ -> compile program

‘sudo chown root dash_shell_test’ -> changes ownership of the program

Group 17
Alexander Semaan
Mark Clancy
CY5130 - CSS

10

‘sudo chmod 4755 dash_shell_test’ -> changes permission to 4755 which enables the Set-UID bit.

Notice that the setuid(0) line is commented, so when we run the program we will get a shell but not a

root shell, which is expected as the dash countermeasure is up.

This time uncomment the line and run the program and get a root shell:

This shows how to get past the dash countermeasure, so now we want to add the assembly code of

setuid(0) to our shellcode, placing it before execve(). For convenience we will place it at the top of the

shellcode as follows:

Group 17
Alexander Semaan
Mark Clancy
CY5130 - CSS

11

The updated shellcode adds 4 instructions: (1) set ebx to zero in Line 2, (2) set eax to 0xd5 via Line 1 and

3 (0xd5 is setuid()’s system call number), and (3) execute the system call in Line 4. Using this shellcode,

we can attempt the attack on the vulnerable program when /bin/sh is linked to /bin/dash, and succeed.

Let’s try this again to successfully get a root shell with dash countermeasure on:

‘rm badfile’ -> delete old badfile

‘./exploit.py’ -> create new badfile with updated shellcode

‘./stack’ -> run vuln program

Task 4 - Defeating address layout randomization

On 32-bit Linux machines, stacks only have 19 bits of entropy, which means the stack base address can

have 2 19 = 524, 288 possibilities. This is not a very high number and can be brute-forced rather easily.

Let’s turn on address randomization back on by doing the following:

‘sudo /sbin/sysctl -w kernel.randomize_va_space=2’

The bash script that we will run in hopes of brute-forcing is the following:

Save this script as ‘brute.sh’ and make it executable with the following command:

Group 17
Alexander Semaan
Mark Clancy
CY5130 - CSS

12

‘sudo chmod +x brute.sh’

Then execute it and wait as it might take some time: ‘./brute.sh’. In my case it only took 1 minute and 15

seconds and it gave me back a root shell:

It is crazy to see how easily and how quickly address layout randomization can be defeated on 32 bit

systems, however on 64 bits systems it might be more difficult and take longer, but it should still be

doable.

Task 5 - StackGuard Protection

As previously mentioned, while compiling the vulnerable program, we had to disable StackGuard

protection in order to successfully exploit the vulnerability in the program. However, now we will

recompile the program without disabling the StackGuard. We are not expected to defeat this

countermeasure. Recompile the program as follows:

‘gcc -o stack.c -z execstack stack.c’

‘./stack’

We get the following error:

The compiler detected that something is trying to abuse a buffer overflow in the stack and immediately

terminated the program and aborted the tasks.

Task 6 - Non-executable stack protection

Again, previously while compiling the vulnerable program, we made sure to toggle off non-executable

stack protection by using the option ‘-z execstack’ for the gcc command. Now, we will recompile our

vulnerable program with this protection, but without StackGuard protection as follows:

Group 17
Alexander Semaan
Mark Clancy
CY5130 - CSS

13

‘ gcc -o stack -fno-stack-protector -z noexecstack stack.c’

‘./stack’

We should not be able to gain a root shell because non-executable stack protection does not allow

shellcode to run in the stack. However, an attacker can still exploit this program by doing something

other than opening a shell like returning to libc. Return-to-libc is a known attack method that overcomes

non-executable stack protection.

